Salah satu opsi adalah menggunakan sesuatu seperti fungsi berikut, yang mengubah bingkai data lokal menjadi bingkai data jarak jauh menggunakan SQL bahkan saat menggunakan koneksi hanya baca .
df_to_pg <- function(df, conn) {
collapse <- function(x) paste0("(", paste(x, collapse = ", "), ")")
names <- paste(DBI::dbQuoteIdentifier(conn, names(df)), collapse = ", ")
values <-
df %>%
lapply(DBI::dbQuoteLiteral, conn = conn) %>%
purrr::transpose() %>%
lapply(collapse) %>%
paste(collapse = ",\n")
the_sql <- paste("SELECT * FROM (VALUES", values, ") AS t (", names, ")")
temp_df_sql <- dplyr::tbl(conn, dplyr::sql(the_sql))
return(temp_df_sql)
}
Berikut adalah ilustrasi dari fungsi yang digunakan. Fungsi telah diuji pada PostgreSQL dan SQL Server, tetapi tidak akan berfungsi pada SQLite (karena kurangnya VALUES
kata kunci yang bekerja dengan cara ini). Saya percaya itu harus bekerja di MySQL atau Oracle, karena ini memiliki VALUES
kata kunci.
library(dplyr, warn.conflicts = FALSE)
library(DBI)
pg <- dbConnect(RPostgres::Postgres())
events <- tibble(firm_ids = 10000:10024L,
date = seq(from = as.Date("2020-03-14"),
length = length(firm_ids),
by = 1))
events
#> # A tibble: 25 x 2
#> firm_ids date
#> <int> <date>
#> 1 10000 2020-03-14
#> 2 10001 2020-03-15
#> 3 10002 2020-03-16
#> 4 10003 2020-03-17
#> 5 10004 2020-03-18
#> 6 10005 2020-03-19
#> 7 10006 2020-03-20
#> 8 10007 2020-03-21
#> 9 10008 2020-03-22
#> 10 10009 2020-03-23
#> # … with 15 more rows
events_pg <- df_to_pg(events, pg)
events_pg
#> # Source: SQL [?? x 2]
#> # Database: postgres [[email protected]/tmp:5432/crsp]
#> firm_ids date
#> <int> <date>
#> 1 10000 2020-03-14
#> 2 10001 2020-03-15
#> 3 10002 2020-03-16
#> 4 10003 2020-03-17
#> 5 10004 2020-03-18
#> 6 10005 2020-03-19
#> 7 10006 2020-03-20
#> 8 10007 2020-03-21
#> 9 10008 2020-03-22
#> 10 10009 2020-03-23
#> # … with more rows