PostgreSQL
 sql >> Teknologi Basis Data >  >> RDS >> PostgreSQL

Bagaimana cara mendapatkan data lokal ke dalam database hanya-baca menggunakan dplyr?

Salah satu opsi adalah menggunakan sesuatu seperti fungsi berikut, yang mengubah bingkai data lokal menjadi bingkai data jarak jauh menggunakan SQL bahkan saat menggunakan koneksi hanya baca .

df_to_pg <- function(df, conn) {

    collapse <- function(x) paste0("(", paste(x, collapse = ", "), ")")

    names <- paste(DBI::dbQuoteIdentifier(conn, names(df)), collapse = ", ")

    values <-
        df %>%
        lapply(DBI::dbQuoteLiteral, conn = conn) %>%
        purrr::transpose() %>%
        lapply(collapse) %>%
        paste(collapse = ",\n")

    the_sql <- paste("SELECT * FROM (VALUES", values, ") AS t (", names, ")")

    temp_df_sql <- dplyr::tbl(conn, dplyr::sql(the_sql))
    
    return(temp_df_sql)
}

Berikut adalah ilustrasi dari fungsi yang digunakan. Fungsi telah diuji pada PostgreSQL dan SQL Server, tetapi tidak akan berfungsi pada SQLite (karena kurangnya VALUES kata kunci yang bekerja dengan cara ini). Saya percaya itu harus bekerja di MySQL atau Oracle, karena ini memiliki VALUES kata kunci.

library(dplyr, warn.conflicts = FALSE)
library(DBI)
   
pg <- dbConnect(RPostgres::Postgres())     

events <- tibble(firm_ids = 10000:10024L,
                 date = seq(from = as.Date("2020-03-14"), 
                            length = length(firm_ids), 
                            by = 1))
events
#> # A tibble: 25 x 2
#>    firm_ids date      
#>       <int> <date>    
#>  1    10000 2020-03-14
#>  2    10001 2020-03-15
#>  3    10002 2020-03-16
#>  4    10003 2020-03-17
#>  5    10004 2020-03-18
#>  6    10005 2020-03-19
#>  7    10006 2020-03-20
#>  8    10007 2020-03-21
#>  9    10008 2020-03-22
#> 10    10009 2020-03-23
#> # … with 15 more rows

events_pg <- df_to_pg(events, pg)
events_pg
#> # Source:   SQL [?? x 2]
#> # Database: postgres [[email protected]/tmp:5432/crsp]
#>    firm_ids date      
#>       <int> <date>    
#>  1    10000 2020-03-14
#>  2    10001 2020-03-15
#>  3    10002 2020-03-16
#>  4    10003 2020-03-17
#>  5    10004 2020-03-18
#>  6    10005 2020-03-19
#>  7    10006 2020-03-20
#>  8    10007 2020-03-21
#>  9    10008 2020-03-22
#> 10    10009 2020-03-23
#> # … with more rows




  1. Database
  2.   
  3. Mysql
  4.   
  5. Oracle
  6.   
  7. Sqlserver
  8.   
  9. PostgreSQL
  10.   
  11. Access
  12.   
  13. SQLite
  14.   
  15. MariaDB
  1. Dapatkan Id dari INSERT bersyarat

  2. Kunci utama komposit PostgreSQL

  3. Ikhtisar Caching untuk PostgreSQL

  4. Permintaan PostgreSQL untuk menghitung/mengelompokkan berdasarkan hari dan menampilkan hari tanpa data

  5. Hubungan tidak ada